Defect structure evolution of polyacrylonitrile and single wall carbon nanotube nanocomposites: a molecular dynamics simulation approach
SJ Heo and KH Kim and B Han and HG Chae and SG Lee, SCIENTIFIC REPORTS, 10 (2020).
DOI: 10.1038/s41598-020-68812-7
In this study, molecular dynamics simulations were performed to understand the defect structure development of polyacrylonitrile-single wall carbon nanotube (PAN-SWNT) nanocomposites. Three different models (control PAN, PAN-SWNT(5,5), and PAN-SWNT(10,10)) with a SWNT concentration of 5 wt% for the nanocomposites were tested to study under large extensional deformation to the strain of 100% to study the corresponding mechanical properties. Upon deformation, the higher stress was observed in both nanocomposite systems as compared to the control PAN, indicating effective reinforcement. The higher Young's (4.76 +/- 0.24 GPa) and bulk (4.19 +/- 0.25 GPa) moduli were observed when the smaller-diameter SWNT(5,5) was used, suggesting that SWNT(5,5) resists stress better. The void structure formation was clearly observed in PAN- SWNT(10,10), while the nanocomposite with smaller diameter SWNT(5,5) did not show the development of such a defect structure. In addition, the voids at the end of SWNT(10,10) became larger in the drawing direction with increasing deformation.
Return to Publications page