Dynamical Accuracy of Water Models on Supercooling
TO Farmer and AJ Markvardsen and TH Rod and HN Bordallo and J Swenson, JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 11, 7469-7475 (2020).
DOI: 10.1021/acs.jpclett.0c02158
Molecular dynamics (MD) simulations are commonly used to explore the structural and dynamical properties of supercooled bulk water in the so- called "no man's land" (NML) (150-227 K), where crystallization occurs almost instantaneously. This approach has provided significant insight into experimentally inaccessible phenomena. In this paper, we compare the dynamics of simulations using one-, three-, and four-body water models to experimentally measured quasielastic neutron scattering spectra. We show that the agreement between simulated and experimental data becomes substantially worse with a decrease in temperature toward the deeply supercooled regime. It was found that it is mainly the nature of the local dynamics that is poorly reproduced, as opposed to the macroscopic properties such as the diffusion coefficient. This strongly implies that the molecular mechanism describing the water dynamics is poorly captured in the MD models, and simulated structural and dynamical properties of supercooled water in NML must be interpreted with care.
Return to Publications page