Calculation of the detonation state of HN3 with quantum accuracy
CH Pham and RK Lindsey and LE Fried and N Goldman, JOURNAL OF CHEMICAL PHYSICS, 153, 224102 (2020).
DOI: 10.1063/5.0029011
HN3 is a unique liquid energetic material that exhibits ultrafast detonation chemistry and a transition to metallic states during detonation. We combine the Chebyshev interaction model for efficient simulation (ChIMES) many-body reactive force field and the extended- Lagrangian multiscale shock technique molecular dynamics method to calculate the detonation properties of HN3 with the accuracy of Kohn- Sham density-functional theory. ChIMES is based on a Chebyshev polynomial expansion and can accurately reproduce density-functional theory molecular dynamics (DFT-MD) simulations for a wide range of unreactive and decomposition conditions of liquid HN3. We show that addition of random displacement configurations and the energies of gas- phase equilibrium products in the training set allows ChIMES to efficiently explore the complex potential energy surface. Schemes for selecting force field parameters and the inclusion of stress tensor and energy data in the training set are examined. Structural and dynamical properties and chemistry predictions for the resulting models are benchmarked against DFT-MD. We demonstrate that the inclusion of explicit four-body energy terms is necessary to capture the potential energy surface across a wide range of conditions. Our results generally retain the accuracy of DFT-MD while yielding a high degree of computational efficiency, allowing simulations to approach orders of magnitude larger time and spatial scales. The techniques and recipes for MD model creation we present allow for direct simulation of nanosecond shock compression experiments and calculation of the detonation properties of materials with the accuracy of Kohn-Sham density- functional theory.
Return to Publications page