Hierarchical thermal transport in nanoconfined water
ZX Zhao and RF Zhou and CZ Sun, JOURNAL OF CHEMICAL PHYSICS, 153, 234701 (2020).
DOI: 10.1063/5.0030738
The structure of nanoconfined fluids is particularly non-uniform owing to the wall interaction, resulting in the distinctive characteristic of thermal transport compared to bulk fluids. We present the molecular simulations on the thermal transport of water confined in nanochannels with a major investigation of its spatial distribution under the effects of wall interaction. The results show that the thermal conductivity of nanoconfined water is inhomogeneous and its layered distribution is very similar to the density profile. The layered thermal conductivity is the coupling result of inhomogeneous density and energy distributions that are generally diametrical, and their contributions to the thermal conductivity compensate with each other. However, the accumulative effect of water molecules is really dominating, resulting in a high thermal conductivity in the high-density layers with the low-energy molecules, and vice versa. Moreover, it is found that the adsorptive and repulsive interactions from solid walls have different roles in the hierarchical thermal transport in nanoconfined water. The adsorptive interaction is only responsible for the layered distribution of thermal conductivity, while the repulsive interaction is responsible for the overall thermal conductivity; accordingly, the thermal conductivity is independent of the strength of water-solid interactions. The identified hierarchical thermal transport in nanoconfined water and its underlying mechanisms have a great significance for the understanding of nanoscale thermal transport and even the mass and energy transport of nanoconfined fluids.
Return to Publications page