Predicting lanthanide coordination structures in solution with molecular simulation

DC Cantu, RARE-EARTH ELEMENT BIOCHEMISTRY: CHARACTERIZATION AND APPLICATIONS OF LANTHANIDE-BINDING BIOMOLECULES, 651, 193-233 (2021).

DOI: 10.1016/bs.mie.2021.02.002

The chemical and physical properties of lanthanide coordination complexes can significantly change with small variations in their molecular structure. Further, in solution, coordination structures (e.g., lanthanide-ligand complexes) are dynamic. Resolving solution structures, computationally or experimentally, is challenging because structures in solution have limited spatial restrictions and are responsive to chemical or physical changes in their surroundings. To determine structures of lanthanide-ligand complexes in solution, a molecular simulation approach is presented in this chapter, which concurrently considers chemical reactions and molecular dynamics. Lanthanide ion, ligand, solvent, and anion molecules are explicitly included to identify, in atomic resolution, lanthanide coordination structures in solution. The computational protocol described is applicable to determining the molecular structure of lanthanide-ligand complexes, particularly with ligands known to bind lanthanides but whose structures have not been resolved, as well as with ligands not previously known to bind lanthanide ions. The approach in this chapter is also relevant to elucidating lanthanide coordination in more intricate structures, such as in the active site of enzymes.

Return to Publications page