Investigation of Coalescence-Induced Droplet Jumping on Mixed- Wettability Superhydrophobic Surfaces

MJ Liao and LQ Duan, PROCESSES, 9, 142 (2021).

DOI: 10.3390/pr9010142

Coalescence-induced droplet jumping has received more attention recently, because of its potential applications in condensation heat transfer enhancement, anti-icing and self-cleaning, etc. In this paper, the molecular dynamics simulation method is applied to study the coalescence-induced jumping of two nanodroplets with equal size on the surfaces of periodic strip-like wettability patterns. The results show that the strip width, contact angle and relative position of the center of two droplets are all related to the jumping velocity, and the jumping velocity on the mixed-wettability superhydrophobic surfaces can exceed the one on the perfect surface with a 180 degrees contact angle on appropriately designed surfaces. Moreover, the larger both the strip width and the difference of wettability are, the higher the jumping velocity is, and when the width of the hydrophilic strip is fixed, the jumping velocity becomes larger with the increase of the width of the hydrophobic strip, which is contrary to the trend of fixing the width of the hydrophobic strip and altering the other strip width.

Return to Publications page