Shear-coupled grain boundary migration in bicrystal Ni with metallic dopant segregation

J Li and XH Yang and P Wang, JOURNAL OF MATERIALS RESEARCH, 36, 775-783 (2021).

DOI: 10.1557/s43578-020-00030-3

The shear-coupled grain boundary (GB) migration in bicrystal Ni with metallic dopant segregation was investigated by the molecular dynamics simulations. Different from the approximately linear relation of the GB migration of pure bicrystal Ni with the nominal shear strain, the curve of doped bicrystal Ni can be divided into three stages. The threshold strain, saturated strain, and saturated GB migration displacement can be used to characterize them. They are considerably affected by the Cr concentration in GB, temperature, and dopant type. The higher the dopant concentration is or the lower the temperature is, the greater the resistance to GB migration is. Cu dopant induces the greatest resistance, Cr and Fe dopants have great effect on the GB migration, but Co has almost no influence. All these hindering effects can be explained from the variation of the number of pinning points induced by the dopant atoms in GB.

Return to Publications page