Thermal conductivities of different period Si/Ge superlattices

YG Liu and JS Hao and GL Ren and JW Zhang, ACTA PHYSICA SINICA, 70, 073101 (2021).

DOI: 10.7498/aps.70.20201789

Thermoelectric materials, which can convert wasted heat into electricity, have attracted considerable attention because they provide a solution to energy problems. The Si/Ge superlattices have shown tremendous promise as effective thermoelectric materials. The period lengths of the Si/Ge superlattices can effectively tailor the phonon's transport behaviors and control their thermal conductivities. In this paper, three kinds of Si/Ge superlattices with different period length distributions (uniform, gradient, random) are constructed. The non- equilibrium molecular dynamics (NEMD) method is used to calculate the thermal conductivities of Si/Ge superlattices under the different period length distributions. The effect of the sample's total length and temperature on the superlattice's thermal conductivity are studied. The simulation result shows that the thermal conductivity of gradient and random periodical Si/Ge superlattices are significantly reduced at room temperature compared with that of the uniform period Si/Ge superlattices. Phonons are transported by wave or particle properties in the different periodical superlattices. The thermal conductivity of uniform period superlattices has an obvious size effect with the increasing of the sample total length. In contrast, the thermal conductivity of gradient, random periodical Si/Ge superlattices are weakly dependent on the sample's total length. At the same time, temperature is an important factor affecting the heat transport properties. We find that the temperature affects the thermal conductivities of the three kinds of superlattices in different ways. With the increase of the temperature, (i) the thermal conductivity of uniform periodical superlattices shows an obvious temperature effect; (ii) the thermal conductivity of the gradient and random periodical Si/Ge superlattices are nearly unchanged due to the competition between phonon localization weakness and phonon-phonon scattering enhancement. In addition, the phonon densities of states of superlattices with three different periodical length distributions are calculated. We find that in the picture of uniform periodical Si/Ge superlattices, the number of pronounced peaks quickly decreases as the period length increases, particularly at higher frequencies. This indicates that as the period length increases, fewer coherent phonons will be formed over the superlattices. Moreover, the scattering mechanisms of phonons for gradient and random periodical Si/Ge superlattices are basically the same at 100 K and 500 K. These findings provide a developmental way to further reduce the thermal conductivity of superlattices.

Return to Publications page