A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins
T Dannenhoffer-Lafage and RB Best, JOURNAL OF PHYSICAL CHEMISTRY B, 125, 4046-4056 (2021).
DOI: 10.1021/acs.jpcb.0c11479
An accurate model for macroscale disordered assemblies of biological macromolecules such as those formed in so-called membraneless organelles would greatly assist in studying their structure, function, and dynamics. Recent evidence has suggested that liquid-liquid phase separation (LLPS) underlies the formation of membraneless organelles. While the general mechanism of exchange of macromolecule/water for macromolecule/macromolecule interactions is known to be the driving force for LLPS, the specific interactions involved are not well understood. One way that protein-water and protein-protein interactions have been understood historically is via hydrophobicity scales. However, these scales are typically optimized for describing these relative interactions in certain cases, such as protein folding or insertion of proteins into membranes. To better describe the relative interactions of proteins that undergo LLPS, we have developed a new, data-driven hydrophobicity scale. To determine the new scale, we used coarse-grained molecular dynamics simulations using the hydrophobicity scale coarse- grained model, which relates the interactions between amino acids to their hydrophobicity. Hydrophobicity values were determined via the force-balance method on a library of proteins that includes unfolded, intrinsically disordered, and phase-separating proteins (PSP). The resulting hydrophobicity scale can better predict whether a given protein will undergo LLPS at physiological conditions by using coarse- grained molecular dynamics simulations than existing hydrophobicity scales. This new scale confirms the importance of pi-pi interactions between amino acids as important drivers of LLPS. This new hydrophobicity scale provides a convenient and compact description of protein-protein interactions for proteins that undergo LLPS and could be used to develop new models to describe interactions between PSP and other components, such as nucleic acids.
Return to Publications page