Molecular dynamics simulation of structural and mechanical features of a Polymer-bonded explosive interface under tensile deformation
L Lv and ML Yang and Y Long and J Chen, APPLIED SURFACE SCIENCE, 557, 149823 (2021).
DOI: 10.1016/j.apsusc.2021.149823
Polymer bonded explosives (PBX) are kind of particulate-reinforced composite materials in which interface interaction is of great significance to its structural and mechanical features. In this work, effect of temperature and strain rate on the microstructure, mechanical properties and fracture damage mechanism of TATB-F2314 are studied using molecular dynamics simulations. The TATB layers at the TATB-F2314 interface are deformed, leading to a rough and undulate surface that facilitates the formation hydrogen bonds between TATB and F2314. Intermixing phase is characterized for the first time at the TATB-F2314 interface. The interfacial structures and mechanical properties of TATB-F2314 depend strongly on temperature and strain rate. F2314 experiences a ductile-to-brittle transition at its glass transition temperature, which exerts great influence on the structural evolution and failure mechanism of TATB-F2314. The fracture mainly appears on F2314 under a quasi-static or low strain rate tension but transfers to TATB layers near to the interfacial intermixing phase at a high strain rate. Our simulations reveal the effect of temperature and strain rate on the microstructure, mechanical behavior and fracture damage mechanism of TATBF2314 interface, which is useful for the design, preparation and safe use of PBX.
Return to Publications page