Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2: Molecular Dynamics Simulation by Deep Learning Potential
FZ Dai and YJ Sun and B Wen and HM Xiang and YC Zhou, JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 72, 8-15 (2021).
DOI: 10.1016/j.jmst.2020.07.014
High entropy diborides are new categories of ultra-high temperature ceramics, which are believed promising candidates for applications in hypersonic vehicles. However, knowledge on high temperature thermal and mechanical properties of high entropy diborides is still lacking unit now. In this work, variations of thermal and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2 with respect to temperature were predicted by molecular dynamics simulations. Firstly, a deep learning potential for Ti-Zr-Hf-Nb-Ta-B diboride system was fitted with its prediction error in energy and force respectively being 9.2 meV/atom and 208 meV/A, in comparison with first-principles calculations. Then, temperature dependent lattice constants, anisotropic thermal expansions, anisotropic phonon thermal conductivities, and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2 from 0 degrees C to 2400 degrees C were evaluated, where the predicted room temperature values agree well with experimental measurements. In addition, intrinsic lattice distortions of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2 were analyzed by displacements of atoms from their ideal positions, which are in an order of 10(-3) A and one order of magnitude smaller than those in (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. It indicates that lattice distortions in (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2 is not so severe as expected. With the new paradigm of machine learning potential, deep insight into high entropy materials can be achieved in the future, since the chemical and structural complexly in high entropy materials can be well handled by machine learning potential. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Return to Publications page