Dielectric Profile and Electromelting of a Monolayer of Water Confined in Graphene Slit Pore
J Majumdar and M Moid and C Dasgupta and PK Maiti, JOURNAL OF PHYSICAL CHEMISTRY B, 125, 6670-6680 (2021).
DOI: 10.1021/acs.jpcb.1c02266
A monolayer of water confined between two parallel graphene sheets exists in many different phases and exhibits fascinating dielectric properties that have been studied in experiments. In this work, we use molecular dynamics simulations to study how the dielectric properties of a confined monolayer of water is affected by its structure. We consider six of the popular nonpolarizable water models-SPC/E, SPC/Fw, TIP3P, TIP3P_M (modified), TIP4P-2005, and TIP4P-2005f-and find that the in- plane structure of the water molecules at ambient temperature and pressure is strongly dependent on the water model: all the 3-point water models considered here show square ice formation, whereas no such structural ordering is observed for the 4-point water models. This allows us to investigate the role of the in-plane structure of the water monolayer on its dielectric profile. Our simulations show an anomalous perpendicular dielectric constant compared to the bulk, and the models that do not exhibit ice formation show very different dielectric response along the channel width compared to models that exhibit square ice formation. We also demonstrate the occurrence of electromelting of the in-plane ordered water under the application of a perpendicular electric field and find that the critical field for electromelting strongly depends on the water model. Together, we have shown the dependence of confined water properties on the different water structures that it may take when sandwiched between bilayer graphene. These remarkable properties of confined water can be exploited in various nanofluidic devices, artificial ion channels, and molecular sieving.
Return to Publications page