Hydrogen evolution reaction in an alkaline environment through nanoscale Ni, Pt, NiO, Fe/Ni and Pt/Ni surfaces: Reactive molecular dynamics simulation
ST Oyinbo and TC Jen, MATERIALS CHEMISTRY AND PHYSICS, 271, 124886 (2021).
DOI: 10.1016/j.matchemphys.2021.124886
The use of electrolysis is an important method for generating industrial hydrogen by water splitting into hydrogen and oxygen. This research outlines how kinetic parameters and the reaction behaviours of complex chemical processes resulting in fundamental technologies ranging from monometallic surfaces (Ni and Pt) to heterometallic surfaces (NiO, Fe/Ni, Pt/Ni) in an alkaline environment of approximately 30% KOH at 300 K-550 K can be extracted using reactive molecular dynamics (RMD) approach. The analytical overview of the detailed hydrogen evolution response of a multifaceted chemical system from reactants to products through different intermediates is provided, in order to maximize the performance of the reactive processes to deliver the desired products and eliminate unnecessary side products. Here, we concentrate on demonstrating that the kinetics information and reaction mechanisms required to explain the reactions analytically from such RMD are realistic. It is then possible to use this analytical definition to integrate the right reaction chemistry from the atomistic description of ReaxFF into larger-scale simulations using continuum chemical dynamics and/or computational fluid dynamics approaches. By systematically altering the composition of the surface, the integration of the second metal into the monometallic surfaces by aligning the ratio can dramatically increase the progressive alkaline electrolytic hydrogen evolution reaction (EHER) activity, and the best activity outperforms other advanced analogues in this study, is delivered from Fe/Ni heterometallic surface with a Fe/Ni ratio of 50%. The findings indicate that it is efficient to incorporate bimetallic component active sites for elementary steps to promote alkaline electrolytic hydrogen evolution reaction.
Return to Publications page