Reflection and transmission of an incident solitary wave at an interface of a binary complex plasma in a microgravity condition
XR Hong and W Sun and M Schwabe and CR Du and WS Duan, PHYSICAL REVIEW E, 104, 025206 (2021).
DOI: 10.1103/PhysRevE.104.025206
Theoretical results are given in the present paper, which can well explain the experimental observations performed under microgravity conditions in the PK-3 Plus Laboratory on board the International Space Station about the propagation of a solitary wave across an interface in a binary complex plasma. By using the traditional reductive perturbation method and the continuity conditions of both the electric potential and the momentum at the interface, we obtain the equivalent "initial conditions" for both the transmitted wave and the reflected waves from the incident wave. Then we obtain the numbers of the reflected and the transmitted solitary waves as well as all the wave amplitudes by using the inverse scattering method. The ripples of both reflection and transmission have also been given by using the Fourier series. The number of the reflected and the transmitted solitary waves produced by interface, as well as all the solitary wave amplitudes, depend on the system parameters such as the number density, electric charge, mass of the dust particles, and the effective temperature in both regions. The analytical results agree with observations in the experiments.
Return to Publications page