A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide

XC Luo and S Goel and RL Reuben, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 32, 3423-3434 (2012).

DOI: 10.1016/j.jeurceramsoc.2012.04.016

The influence of polymorphism on nanometric machinability of single crystal silicon carbide (SiC) has been investigated through molecular dynamics (MD) simulation. The simulation results are compared with silicon as a reference material. Cutting hardness was adopted as a quantifier of the machinability of the polytypes of single crystal SiC. 3C-SiC offered highest cutting resistance (similar to 2.9 times that of silicon) followed by the 4H-SiC (similar to 2.8 times that of silicon) whereas 6H-SiC (similar to 2.1 times that of silicon) showed the least. Despite its high cutting resistance, 4H-SiC showed the minimum sub- surface crystal lattice deformed layer depth, in contrast to 6H-SiC. Further analysis of temperatures in the cutting zone and the percentage tool wear indicated that single point diamond turning (SPDT) of single crystal SiC could be limited to either 6H-SiC or 4H-SiC depending upon quality and cost considerations as these were found to be more responsive and amenable to SPDT compared to single crystal 3C-SiC. (c) 2012 Elsevier Ltd. All rights reserved.

Return to Publications page