Cassie State Stability and Gas Restoration Capability of Superhydrophobic Surfaces with Truncated Cone-Shaped Pillars
X Han and MY Wang and RL Yan and HL Wang, LANGMUIR, 37, 12897-12906 (2021).
DOI: 10.1021/acs.langmuir.1c01909
The gas layer stability on superhydrophobic surfaces and gas restoration on the immersed superhydrophobic surfaces have been great challenges for their practical applications in recent years. Inspired by the naturally existing mushroom-like super-repellent superhydrophobic patterns, we choose superhydrophobic surfaces with truncated cone-shaped pillars as our research objects to tackle such challenges by tuning their geometrical parameters. We perform molecular dynamics simulations to investigate the Cassie-Wenzel transition under external pressure and the Wenzel-Cassie transition due to underwater spreading of compressed bubbles. Theories based on the Young-Laplace equation and total free- energy variation are developed to explore the influence of geometrical parameters of pillars on the pressure resistance and underwater gas restoration, which is in good agreement with simulation results. These simulation results and theoretical analysis suggest that cork-shaped pillars, analogous to the surface structures of natural organisms like springtails and Salvinia leaves, can be super-repellent to the liquid and favorable for the gas spreading process. Our study provides theoretical guidance for the design of superhydrophobic surfaces with both Cassie state stability and gas restoration capability.
Return to Publications page