Understanding the Effects of DRAM Correctable Error Logging at Scale
KB Ferreira and S Levy and V Kuhns and N DeBardeleben and S Blanchard, 2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 421-432 (2021).
DOI: 10.1109/Cluster48925.2021.00060
Fault tolerance poses a major challenge for future large-scale systems. Current research on fault tolerance has been principally focused on mitigating the impact of uncorrectable errors: errors that corrupt the state of the machine and require a restart from a known good state. However, correctable errors occur much more frequently than uncorrectable errors and may be even more common on future systems. Although an application can safely continue to execute when correctable errors occur, recovery from a correctable error requires the error to be corrected and, in most cases, information about its occurrence to be logged. The potential performance impact of these recovery activities has not been extensively studied in HPC. In this paper, we use simulation to examine the relationship between recovery from correctable errors and application performance for several important extreme-scale workloads. Our paper contains what is, to the best of our knowledge, the first detailed analysis of the impact of correctable errors on application performance. Our study shows that correctable errors can have significant impact on application performance for future systems. We also find that although the focus on correctable errors is focused on reducing failure rates, reducing the time required to log individual errors may have a greater impact on overheads at scale. Finally, this study outlines the error frequency and durations targets to keep correctable overheads similar to that of today's systems. This paper provides critical analysis and insight into the overheads of correctable errors and provides practical advice to systems administrators and hardware designers in an effort to fine-tune performance to application and system characteristics.
Return to Publications page