Design the RNA aptamer of PCA3 long non-coding ribonucleic acid by the coarse-grained molecular mechanics
HW Yang and SP Ju and TF Tseng, JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 40, 13833-13847 (2022).
DOI: 10.1080/07391102.2021.1994881
The stochastic tunneling-basin hopping-discrete molecular dynamics (STUN-BH-DMD) method was applied to predict the tertiary structure of the prostate cancer marker PCA3 using two respective secondary structures predicted by the Vienna RNA package and Mathews lab package. The RNA CG force field with the geometrical restraints for maintaining PCA3 secondary structures is used. For each secondary structure, 5000 PCA3 structures were predicted by using 5000 independent initial structures. These structures were then evaluated by a scoring function, considering the contributions from the radius of gyration, contact energy, and surface fraction of complementary nucleotides to ASO683 and ASO735 used in the related experiment. For each secondary structure, the PCA3 structures with the highest three scores were selected for aptamer design and further adsorption simulation. The ASOs complementary to PCA3 surface segments possessing relatively higher RMSF values are selected to be the potential PCA3 aptamers. After the adsorption simulation, the adsorption energies of ASO961, ASO3181, ASO3533, and ASO3595 are higher than or comparable to those of ASO683 and ASO735 used in the experiment. The NEB method was used to obtain MEPs for the adsorption process of all predicted ASOs onto PCA3. The adsorption barriers range between 29 - 39 kcal/mol, while the desorption barriers range between 112 - 352 kcal/mol, indicating these aptamer/PCA3 complexes are very stable. Using PCA3 surface segments with relatively higher RMSF values, longer ASOs can be also obtained and most longer ASOs possess lower binding energy, ranging between -486.1 and -618.2 kcal/mol.
Return to Publications page