Composite entanglement topology and extensional rheology of symmetric ring-linear polymer blends

TC O'Connor and T Ge and GS Grest, JOURNAL OF RHEOLOGY, 66, 49-65 (2022).

DOI: 10.1122/8.0000319

Extensive molecular simulations are applied to characterize the equilibrium dynamics, entanglement topology, and nonlinear extensional rheology of symmetric ring-linear polymer blends with systematically varied ring fraction phi R. Chains with degree of entanglement Z & AP; 14 are mixed to produce 10 well-entangled systems with phi R varying from neat linear to neat ring melts. Z is large enough that except for very large phi R, the rings are threaded by multiple linear chains in equilibrium. Primitive path analysis is used to visualize and quantify the structure of the composite ring-linear entanglement network. We measure the quantity of ring-linear threading and linear-linear entanglement as a function of phi R and identify with simple arguments a ring fraction phi R & AP; 0.4 where the topological constraints of the composite entanglement network are maximized. These topological analyses are used to rationalize the phi R-dependence of ring and linear chain dynamics, conformations, and rheology. Simulations of startup uniaxial elongation flows demonstrate the extensional stress overshoot observed in recent filament stretching experiments and characterize how it depends on the blend composition and entanglement topology. The overshoot is driven by an overstretching and recoil of ring polymers due to the convective unthreading of rings from linear chains.

Return to Publications page