Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions
P White, INTERNATIONAL JOURNAL OF FATIGUE, 44, 141-150 (2012).
DOI: 10.1016/j.ijfatigue.2012.05.005
A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a K-max = 1.0 MPa root m was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T = 20 K, and a range of different K-min. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3 x 10(6) atoms and had a diameter and width of 20 nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the 1 1 0 plane in the < 1 0 0 > direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
Return to Publications page