Colorimetric quantification of linking in thermoreversible nanocrystal gel assemblies
J Kang and SA Valenzuela and EY Lin and MN Dominguez and ZM Sherman and TM Truskett and EV Anslyn and DJ Milliron, SCIENCE ADVANCES, 8, eabm7364 (2022).
DOI: 10.1126/sciadv.abm7364
Nanocrystal gels can be responsive, tunable materials, but designing their structure and properties is challenging. By using reversibly bonded molecular linkers, gelation can be realized under conditions predicted by thermodynamics. However, simulations have offered the only microscopic insights, with no experimental means to monitor linking leading to gelation. We introduce a metal coordination linkage with a distinct optical signature allowing us to quantify linking in situ and establish structural and thermodynamic bases for assembly. Because of coupling between linked indium tin oxide nanocrystals, their infrared absorption shifts abruptly at a chemically tunable gelation temperature. We quantify bonding spectroscopically and use molecular simulation to understand temperature-dependent bonding motifs, revealing that gel formation is governed by reaching a critical number of effective links that extend the nanocrystal network. Microscopic insights from our colorimetric linking chemistry enable switchable gels based on thermodynamic principles, opening the door to rational design of programmable nanocrystal networks.
Return to Publications page