Theoretical Insights into Impact of Electrode and Electrolyte Over Li- Air Battery
J Fiates and G Doubek, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 169, 030521 (2022).
DOI: 10.1149/1945-7111/ac59f6
The lithium-air battery is getting attention as a good technology for energy storage. Nevertheless, the design of such a device still faces some crucial limitations. The most challenging one concerns the selection of electrodes and solvents to provide good performance during the cell operation. Based on literature evidence, we have selected three system configurations of electrode/electrolyte to be evaluated via molecular dynamics simulation: gold/DMSO (dimethyl sulfoxide), graphene/DMSO, and graphene/TEGDME (tetraethylene glycol dimethyl ether) using lithium hexafluorophosphate-LiPF6. We show that the local concentration distributions for DMSO and Li+ are highly influenced by the electrode material. Furthermore, the Li+ solvation shell presents a more complex arrangement when in composition with TEGDME. Additionally, the electrical double layer capacitance in this solvent shows high impedance to the electrode surface. This investigation noticed that the electric field plays a role over the system, contributing to the solvent organization and the electrical double layer formation. Overall, this study strengthens the idea that theoretical findings may contribute to a complementary investigation, leading some light over experimental Li-air battery data reported in the literature. (C) 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
Return to Publications page