Coarse-Grained Dynamically Accurate Simulations of Ionic Liquids: pyr14TFSI and EMIMBF4
TD Stoffel and JB Haskins and JW Lawson and S Markutsya, JOURNAL OF PHYSICAL CHEMISTRY B, 126, 1819-1829 (2022).
DOI: 10.1021/acs.jpcb.1c08107
In this work, coarse-grained (CG) models for two different sets of ionic liquids were developed from atomistic molecular dynamics (MD) reference systems, expanding their system size and time duration capabilities. The bonded force field of the CG systems was built using harmonic oscillator potential (HOP) fitting, while the nonbonded force field was generated with the multiscale coarse-graining (MS-CG) approach based on force matching. The dynamics of each system were corrected using the probability distribution function-based coarse-grained molecular dynamics (PDF-based CGMD) method. The structure and dynamics of each system were proven to match reference system data at two temperature scales. CG models and force fields for these liquids were developed to exemplify a general purpose methodology for producing MD results of ionic liquids and other fluids with accurate structural as well as dynamic properties. As an application, developed ionic liquids CG models were then applied to study vacuum-interface interaction. Density profile results of vacuum-interface exposure show significant deviation from bulk behavior. At the interface, multilayer ordering of ionic liquids is predicted to be similar to those observed from an experimental work. This ordering is intensified by decreasing temperature and use of the PDF-based CGMD method as opposed to conventional CG methods.
Return to Publications page