Rigorous expressions for thermodynamic properties in the NpH ensemble

P Stroker and K Meier, PHYSICAL REVIEW E, 105, 035301 (2022).

DOI: 10.1103/PhysRevE.105.035301

Molecular expressions for thermodynamic properties of fluids and derivatives of the entropy up to third order in the isoenthalpic- isobaric ensemble are derived by using the methodology developed by Lustig for the microcanonical and canonical ensembles J. Chem. Phys. 100, 3048 (1994); Mol. Phys. 110, 3041 (2012). They are expressed in a systematic way by phase-space functions, which represent derivatives of the phase-space volume with respect to enthalpy and pressure. The expressions for thermodynamic properties contain only ensemble averages of combinations of the kinetic energy and volume of the system. Thus, the calculation of thermodynamic properties in the isoenthalpic-isobaric ensemble does not require volume derivatives of the potential energy. This is particularly advantageous in Monte Carlo simulations when the interactions between molecules are described by very accurate ab initio pair and nonadditive three-body potentials. The derived expressions are validated by Monte Carlo simulations for the simple Lennard-Jones model fluid as a test case.

Return to Publications page