A Framework for Comparing Multi-Objective Optimization Approaches for a Stormwater Drainage Pumping System to Reduce Energy Consumption and Maintenance Costs

MM Wang and S Zheng and C Sweetapple, WATER, 14, 1248 (2022).

DOI: 10.3390/w14081248

Reducing energy consumption and maintenance costs of a pumping system is seen as an important but difficult multi-objective optimization problem. Many evolutionary algorithms, such as particle swarm optimization (PSO), multi-objective particle swarm optimization (MOPSO), and non-dominated sorting genetic algorithm II (NSGA-II) have been used. However, a lack of comparison between these approaches poses a challenge to the selection of optimization approach for stormwater drainage pumping stations. In this paper, a new framework for comparing multi-objective approaches is proposed. Two kinds of evolutionary approaches, single- objective optimization and multi-objective optimization, are considered. Three approaches representing these two types are selected for comparison, including PSO with linear weighted sum method (PSO-LWSM), MOPSO with technique for order preference by similarity to an ideal solution (MOPSO-TOPSIS), and NSGA-II with TOPSIS (NSGA-II-TOPSIS). Four optimization objectives based on the number of pump startups/shutoffs, working hours, energy consumption, and drainage capacity are considered, of which the first two are new ones quantified in terms of operational economy in this paper. Two comparison methods-TOPSIS and operational economy and drainage capacity (E&C)-are used. The framework is demonstrated and tested by a case in China. The average values of the TOPSIS comprehensive evaluation index of the three approaches are 0.021, 0.154, and 0.375, respectively, and for E&C are 0.785, 0.813, and 0.839, respectively. The results show that the PSO-LWSM has better optimization results. The results validate the efficiency of the framework. The proposed framework will help to find a better optimization approach for pumping systems to reduce energy consumption and maintenance costs.

Return to Publications page