Peridynamics and surrogate modeling of pressure-driven well stimulation

DT Seidl and DM Valiveti, INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 154, 105105 (2022).

DOI: 10.1016/j.ijrmms.2022.105105

In this work we use the peridynamics theory of solid mechanics to simulate fracture in an annular rock domain subject to an in-situ stress and create surrogate models that predict the area of the resulting cracks. Peridynamics is a non-local formulation of continuum mechanics that naturally accommodates material discontinuities. Furthermore, unlike other fracture modeling techniques there is no need to provide information about the crack path. We utilize the peridynamics code Peridigm and take a two-stage approach to fracture modeling. First an implicit solve is performed to compute the in-situ stress state. We then execute an explicit solve where a pressure loading designed to emulate fluid-driven hydraulic fracture is applied at the borehole and transmitted to the pre -stressed rock. We present results from polynomial and single and multi-level Gaussian process surrogate models constructed from a sampling study of the peridynamics model. The surrogates predict crack area given a measure of the in-situ stress anisotropy and rise time and amplitude of the pressure loading. These surrogates take a minuscule fraction of peridynamics model's running time to evaluate and are a step towards enabling advanced optimization and uncertainty quantification workflows that require many model evaluations.

Return to Publications page