Challenges and limits of mechanical stability in 3D direct laser writing
E Sedghamiz and MD Liu and W Wenzel, NATURE COMMUNICATIONS, 13, 2115 (2022).
DOI: 10.1038/s41467-022-29749-9
Direct laser writing is an effective technique for fabrication of complex 3D polymer networks using ultrashort laser pulses. Practically, it remains a challenge to design and fabricate high performance materials with different functions that possess a combination of high strength, substantial ductility, and tailored functionality, in particular for small feature sizes. To date, it is difficult to obtain a time-resolved microscopic picture of the printing process in operando. To close this gap, we herewith present a molecular dynamics simulation approach to model direct laser writing and investigate the effect of writing condition and aspect ratio on the mechanical properties of the printed polymer network. We show that writing conditions provide a possibility to tune the mechanical properties and an optimum writing condition can be applied to fabricate structures with improved mechanical properties. We reveal that beyond the writing parameters, aspect ratio plays an important role to tune the stiffness of the printed structures. Direct laser writing is an effective technique for fabrication of complex 3D polymer networks using ultrashort laser pulses but to date it is difficult to obtain a time-resolved microscopic picture of the printing process in operando. Here, the use molecular dynamics simulation to model direct laser writing and investigate the effect of writing condition and aspect ratio on the mechanical properties of the printed polymer network.
Return to Publications page