Efficient d-dimensional molecular dynamics simulations for studies of the glass-jamming transition

RS Hoy and KA Interiano-Alberto, PHYSICAL REVIEW E, 105, 055305 (2022).

DOI: 10.1103/PhysRevE.105.055305

We develop an algorithm suitable for parallel molecular dynamics simulations in d spatial dimensions and describe its implementation in C++. All routines work in arbitrary d; the maximum simulated d is limited only by available computing resources. These routines include several that are particularly useful for studies of the glass-jamming transition, such as SWAP Monte Carlo and FIRE energy minimization. The scalings of simulation runtimes with the number of particles N and number of simulation threads n(threads) are comparable to popular molecular dynamics codes such as LAMMPS. The efficient parallel implementation allows simulation of systems that are much larger than those employed in previous high-dimensional glass-transition studies. As a demonstration of the code's capabilities, we show that supercooled d = 6 liquids can possess dynamics that are substantially more heterogeneous and experience a breakdown of the Stokes-Einstein relation that is substantially stronger than previously reported, owing at least in part to the much smaller system sizes employed in earlier simulations.

Return to Publications page