Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells
X Wan and QT Liu and JY Liu and SY Liu and XF Liu and LR Zheng and JX Shang and RH Yu and JL Shui, NATURE COMMUNICATIONS, 13, 2963 (2022).
DOI: 10.1038/s41467-022-30702-z
Simultaneously increasing the activity and stability of the single-atom active sites of M-N-C catalysts is critical but remains a great challenge. Here, we report an Fe-N-C catalyst with nitrogen-coordinated iron clusters and closely surrounding Fe-N-4 active sites for oxygen reduction reaction in acidic fuel cells. A strong electronic interaction is built between iron clusters and satellite Fe-N-4 due to unblocked electron transfer pathways and very short interacting distances. The iron clusters optimize the adsorption strength of oxygen reduction intermediates on Fe-N-4 and also shorten the bond amplitude of Fe-N-4 with incoherent vibrations. As a result, both the activity and stability of Fe-N-4 sites are increased by about 60% in terms of turnover frequency and demetalation resistance. This work shows the great potential of strong electronic interactions between multiphase metal species for improvements of single-atom catalysts. It is challenging to break the activity-stability trade-off in Fe-N-C fuel cell catalysts. Here, the authors show that interactions between iron atoms and clusters accelerate reaction kinetics and suppress demetalation to improve fuel cell stability.
Return to Publications page