Modeling Speedup in Multi-OS Environments
BR Tauro and CH Liu and KC Hale, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 33, 1436-1450 (2022).
DOI: 10.1109/TPDS.2021.3114984
For workloads that place strenuous demands on system software, novel operating system designs like unikernels, library OSes, and hybrid runtimes offer a promising path forward. However, while these systems can outperform general-purpose OSes, they have limited ability to support legacy applications. Multi-OS environments, where the application's execution is split between a control plane and a data plane operating system, can address this challenge, but reasoning about the performance of applications that run in such a split execution environment is currently guided only by expert intuition and empirical analysis. As the level of specialization in system software and hardware continues to increase, there is both a pressing need and ripe opportunity for investigating analytical models that can predict application performance and guide programmers' intuition when considering multi-OS environments. In this paper we present such a model to place bounds on application speedup, beginning with a simple, intuitive formulation, and progressing to a more refined model. We present an analysis of the model for a diverse set of benchmarks, as well as a prototype tool to project multi-OS speedups for applications on existing systems. Finally, we validate our model on state-of-the-art multi-OS systems, demonstrating that it reliably predicts speedup with 96% average accuracy.
Return to Publications page