Local Ice-like Structure at the Liquid Water Surface

NL Odendahl and PL Geissler, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 144, 11178-11188 (2022).

DOI: 10.1021/jacs.2c01827

Experiments and computer simulations have established that liquid water's surfaces can deviate in important ways from familiar bulk behavior. Even in the simplest case of an air-water interface, distinctive layering, orientational biases, and hydrogen bond arrangements have been reported, but an overarching picture of their origins and relationships has been incomplete. Here we show that a broad set of such observations can be understood through an analogy with the basal face of crystalline ice. Using simulations, we demonstrate a number of structural similarities between water and ice surfaces, suggesting the presence of domains at the air-water interface with ice- like features that persist over 2-3 molecular diameters. Most prominent is a shared characteristic layering of molecular density and orientation perpendicular to the interface. Lateral correlations of hydrogen bond network geometry point to structural similarities in the parallel direction as well. Our results bolster and significantly extend previous conceptions of ice-like structure at the liquid's boundary and suggest that the much-discussed quasi-liquid layer on ice evolves subtly above the melting point into a quasi-ice layer at the surface of liquid water.

Return to Publications page