Viscoelasticity of Low-Molecular-Weight Polyelectrolytes
PA Bonnaud and H Ushiyama and S Tejima and JI Fujita, JOURNAL OF PHYSICAL CHEMISTRY B (2022).
DOI: 10.1021/acs.jpcb.2c01448
Shear-thickening fluids that absorb the impact energy of high-velocity projectiles are of great interest for aerospace and body-armor applications. In such a frame, we investigate transient states of neat and aqueous polyelectrolytes (PE) having low molecular weights and containing poly(2-(methacryloyloxy)ethyltrimethylammonium) as polycations and poly(acrylamide-co-acrylic acid) as polyanions. We compare results with those of bulk water. We employ nonequilibrium molecular dynamics to simulate oscillatory shear, mainly in the linear viscoelastic regime. We find that neat PE exhibits properties of a viscoelastic solid, whereas water and the aqueous mixture of PE conform to viscoelastic liquids with Maxwellian behavior at low angular frequencies. Terminal relaxation times are similar to 0.499 and similar to 1.385 ps for water and the aqueous mixture of PE, respectively. At high angular frequencies, storage moduli show anomalous behaviors that correspond to transitions between shear thinning and shear thickening in complex shear viscosities. The change in potential energy with the increase of the angular frequency is mainly driven by intramolecular interactions for neat PE, whereas short-range Coulomb interactions are the major contributions for water and the aqueous mixture of PE. Upon observation of the molecular configurations, only the local polyionic structure in the aqueous mixture of PE shows improvement when increasing the angular frequency, whereas the rest remains barely affected. Thus, the water structure in the aqueous mixture of PE allows the storage of energy elastically through the hydrogen-bond network at large angular frequencies, whereas the mechanical contribution of polyions weakens and fully vanishes at the beginning of shear thinning, explaining the superimposed data with data of bulk water. Our method and findings set the path for future molecular simulations in the nonlinear viscoelastic regime with more complex underlying molecular mechanisms.
Return to Publications page