Microporous polymer adsorptive membranes with high processing capacity for molecular separation
ZG Wang and XF Luo and ZJ Song and K Lu and SW Zhu and YS Yang and YT Zhang and WX Fang and J Jin, NATURE COMMUNICATIONS, 13, 4169 (2022).
DOI: 10.1038/s41467-022-31575-y
Trade-off between permeability and nanometer-level selectivity is an inherent shortcoming of membrane-based separation of molecules. Here, the authors report a membrane adsorption material based on hydrophilic amidoxime modified polymer of intrinsic microporosity to selectively adsorb and separate small organic molecules from water with ultrahigh processing capacity Trade-off between permeability and nanometer-level selectivity is an inherent shortcoming of membrane-based separation of molecules, while most highly porous materials with high adsorption capacity lack solution processability and stability for achieving adsorption-based molecule separation. We hereby report a hydrophilic amidoxime modified polymer of intrinsic microporosity (AOPIM-1) as a membrane adsorption material to selectively adsorb and separate small organic molecules from water with ultrahigh processing capacity. The membrane adsorption capacity for Rhodamine B reaches 26.114 g m(-2), 10-1000 times higher than previously reported adsorptive membranes. Meanwhile, the membrane achieves >99.9% removal of various nano-sized organic molecules with water flux 2 orders of magnitude higher than typical pressure-driven membranes of similar rejections. This work confirms the feasibility of microporous polymers for membrane adsorption with high capacity, and provides the possibility of adsorptive membranes for molecular separation.
Return to Publications page