Predicting pullout strength of pedicle screws in broken bones from X-ray images
YY Tsai and MK Hsieh and PL Lai and CL Tai and SW Chang, JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 134, 105366 (2022).
DOI: 10.1016/j.jmbbm.2022.105366
Pedicle screw fixation is one of the most common procedures used in spinal fusion surgery. The screw loosening is a major concern, which may be caused by broken pedicles. In vitro pullout tests or insertion torque are the main approaches for assessing the stability of the screw; however, direct evidence was lacking for clinical human spines. Here, we aim to provide a model that can predict the pullout strengths of pedicle screws in various pedicle conditions from X-ray images. A weighted embedded bone volume (EBV) model is proposed for pullout strengths prediction by considering the bone heterogeneity and confinement of the screw. We showed that the pullout strength is proportional to the EBV for homogeneous bone and the weighted EBV for layered composite bone. The proposed weighted EBV model is validated with in vitro Sawbones (R) pullout experiments. The results show that the model has better accuracy than the simple EBV model, with a coefficient of determination of 0.94. The proposed weighted EBV model can help assess the stability of a pedicle screw in a broken pedicle by simply examining 2D X-ray images.
Return to Publications page