Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping

TE Li and A Nitzan and JE Subotnik, NATURE COMMUNICATIONS, 13, 4203 (2022).

DOI: 10.1038/s41467-022-31703-8

Selectively exciting target molecules to high vibrational states is inefficient in the liquid phase, which restricts the use of IR pumping to catalyze ground-state chemical reactions. Here, we demonstrate that this inefficiency can sometimes be solved by confining the liquid to an optical cavity under vibrational strong coupling conditions. For a liquid solution of (CO2)-C-13 solute in a (CO2)-C-12 solvent, cavity molecular dynamics simulations show that exciting a polariton (hybrid light-matter state) of the solvent with an intense laser pulse, under suitable resonant conditions, may lead to a very strong (>3 quanta) and ultrafast (<1 ps) excitation of the solute, even though the solvent ends up being barely excited. By contrast, outside a cavity the same input pulse fluence can excite the solute by only half a vibrational quantum and the selectivity of excitation is low. Our finding is robust under different cavity volumes, which may lead to observable cavity enhancement on IR photochemical reactions in Fabry-Perot cavities. Hybrid light-matter states formed in the strong light-matter coupling regime can alter the molecular ground-state reactivity. Here, Li et al. computationally demonstrate that pumping a collection of solvent molecules forming hybrid vibrational light-matter states in an optical cavity can excite solute molecules to very high excited states.

Return to Publications page