Topological digestion drives time-varying rheology of entangled DNA fluids

D Michieletto and P Neill and S Weir and D Evans and N Crist and VA Martinez and RM Robertson-Anderson, NATURE COMMUNICATIONS, 13, 4389 (2022).

DOI: 10.1038/s41467-022-31828-w

Understanding and controlling the rheology of polymeric complex fluids that are pushed out-of-equilibrium is a fundamental problem in both industry and biology. For example, to package, repair, and replicate DNA, cells use enzymes to constantly manipulate DNA topology, length, and structure. Inspired by this feat, here we engineer and study DNA- based complex fluids that undergo enzymatically-driven topological and architectural alterations via restriction endonuclease (RE) reactions. We show that these systems display time-dependent rheological properties that depend on the concentrations and properties of the comprising DNA and REs. Through time-resolved microrheology experiments and Brownian Dynamics simulations, we show that conversion of supercoiled to linear DNA topology leads to a monotonic increase in viscosity. On the other hand, the viscosity of entangled linear DNA undergoing fragmentation displays a universal decrease that we rationalise using living polymer theory. Finally, to showcase the tunability of these behaviours, we design a DNA fluid that exhibits a time-dependent increase, followed by a temporally-gated decrease, of its viscosity. Our results present a class of polymeric fluids that leverage naturally occurring enzymes to drive diverse time-varying rheology by performing architectural alterations to the constituents. Understanding and controlling the rheology of polymeric complex fluids is of fundamental importance in both industry and biology. Here, Michieletto et al. show how to achieve time-dependent rheology of DNA solutions via enzymatically-driven architectural alterations by restriction endonucleases.

Return to Publications page