Post-buckling evolution of compressed thin films adhered to rigid substrates

XB Yuan and B Zhu and YS Wang, INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 232, 107616 (2022).

DOI: 10.1016/j.ijmecsci.2022.107616

Compressing a thin film adhered to a substrate can yield delaminated blisters, if the interface adhesion is relatively weak. In this work, through the combination of theoretical modeling and numerical simulations, we investigate the mechanics governing the buckle- delamination and post-buckling evolution of compressed thin films adhered to rigid substrate, where the interface adhesion is attributed by van der Waals interactions. The deformed configurations of thin films can be categorized into five deformation modes depending on the material, geometric and interfacial parameters and the in-plane compressive strain. Through the energy-variational approach, large- deformation beam models are constructed to describe the deformed configurations and energy variations of the arc-shape and self-contact buckling modes. The phase diagrams related to the equilibrium buckling state are constructed by energy analysis, based on which the evolution of the post-buckling behavior is analyzed. Our results may find potential applications in the controlled compressive-buckling assembly of micro-/ nano-scale thin films.

Return to Publications page