Dynamic response of high-entropy alloys to ballistic impact
YQ Tang and DY Li, SCIENCE ADVANCES, 8, eabp9096 (2022).
DOI: 10.1126/sciadv.abp9096
High-entropy alloys (HEAs) are promising to provide effective antiballistic capability because of their superior mechanical properties. However, the twinning-active Cantor alloy is found less ballistic resistant, compared with its Mn-free companion. It is unclear how the HEAs resist ballistic impact and why Mn does not benefit the ballistic resistance. Here, we used molecular dynamics simulations to investigate the ballistic resistances of CrMnFeCoNi and CrFeCoNi and elucidate underlying mechanisms. It is shown that the alloys' ballistic resistances dominantly benefit from active dislocations generated at higher strain rates. Stronger atomic bonding and higher dislocation densities make the CrFeCoNi easier to be strain hardened with elevated toughness to resist high-speed deformation, while weaker atomic bonding and easier occurrence of dislocation tangling make CrMnFeCoNi less resistant to failure under ballistic impact. This work helps better understand the antiballistic behavior of HEAs and guide the design of armor and energy-absorption materials.
Return to Publications page