Renormalization of excitonic properties by polar phonons

Y Park and DT Limmer, JOURNAL OF CHEMICAL PHYSICS, 157, 104116 (2022).

DOI: 10.1063/5.0100738

We employ quasiparticle path integral molecular dynamics to study how the excitonic properties of model semiconductors are altered by electron-phonon coupling. We describe ways within a path integral representation of the system to evaluate the renormalized mass, binding energy, and radiative recombination rate of excitons in the presence of a fluctuating lattice. To illustrate this approach, we consider Frohlich-type electron-phonon interactions and employ an imaginary time influence functional to incorporate phonon-induced effects nonperturbatively. The effective mass and binding energies are compared with perturbative and variational approaches, which provide qualitatively consistent trends. We evaluate electron-hole recombination rates as mediated through both trap-assisted and bimolecular processes, developing a consistent statistical mechanical approach valid in the reaction limited regime. These calculations demonstrate how phonons screen electron-hole interactions, generically reducing exciton binding energies and increasing their radiative lifetimes. Published under an exclusive license by AIP Publishing

Return to Publications page