Defect-activated self-assembly of multilayered graphene paper: a mechanically robust architecture with high strength
LQ Xu and N Wei and XM Xu and ZY Fan and YP Zheng, JOURNAL OF MATERIALS CHEMISTRY A, 1, 2002-2010 (2013).
DOI: 10.1039/c2ta00176d
In this work molecular dynamics simulations are carried out to investigate the defect-mediated self-assembly of graphene paper from several layers of graphene sheets with vacancy defects. Tensile and shear deformations are applied to the obtained architectures to investigate both the in-plane and the out-of-plane mechanical properties. The effect of incipient defect coverage is analyzed and super-ductility is observed in the high defect density situation. While the stiffness and strength decrease with the increasing of incipient defect coverage under in-plane deformations, they increase under out-of- plane deformations, which can be attributed to the enhanced defect- induced interlayer cross-linking. Effects of crack-like flaws are also investigated to demonstrate the robustness of this structure. Our results demonstrate that defects, which are sometimes unavoidable and undesirable, can be engineered in a favorable way to provide a new approach for graphene-based self-assembly of vertically aligned architectures with mechanical robustness and high strength.
Return to Publications page