Kinetic coefficient for ice-water interface from simulated non- equilibrium relaxation at coexistence
RKR Addula and B Peters, JOURNAL OF CHEMICAL PHYSICS, 157, 174502 (2022).
DOI: 10.1063/5.0124848
In the theory of solidification, the kinetic coefficient multiplies the local supercooling to give the solid-liquid interface velocity. The same coefficient should drive interface migration at the coexistence temperature in proportion to a curvature force. This work computes the ice-water kinetic coefficient from molecular simulations starting from a sinusoidal ice-water interface at the coexistence temperature. We apply this method to the basal and prismatic ice planes and compare results to previous estimates from equilibrium correlation functions and simulations at controlled supercooling. Published under an exclusive license by AIP Publishing.
Return to Publications page