Atomic-Level Structure of Zinc-Modified Cementitious Calcium Silicate Hydrate

A Morales-Melgares and Z Casar and P Moutzouri and A Venkatesh and M Cordova and AK Mohamed and KL Scrivener and P Bowen and L Emsley, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 144, 22915-22924 (2022).

DOI: 10.1021/jacs.2c06749

It has recently been demonstrated that the addition of zinc can enhance the mechanical strength of tricalcium silicates (C3S) upon hydration, but the structure of the main hydration product of cement, calcium silicate hydrate (C-S-H), in zinc modified formulations remains unresolved. Here, we combine 29Si DNP-enhanced solid-state nuclear magnetic resonance (NMR), density functional theory (DFT)-based chemical shift computations, and molecular dynamics (MD) modeling to determine the atomic-level structure of zinc-modified C-S-H. The structure contains two main new silicon species (Q(1,Zn) and Q(2p,Zn)) where zinc substitutes Q(1) silicon species in dimers and bridging Q(2b) silicon sites, respectively. Structures determined as a function of zinc content show that zinc promotes an increase in the dreierketten mean chain lengths.

Return to Publications page