Effects of Various Cross Sections on Elastoplastic Behavior of Fe Nanowires under Tension/Compression
SMN Souq and FA Ghasemi and MMS Fakhrabadi, JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 32, 423-437 (2023).
DOI: 10.1007/s11665-022-07091-x
This study aims to evaluate the effects of various cross sections on the mechanical properties of Fe nanowires including their elastic moduli and ultimate strength values using the molecular dynamics simulation. The well-known embedded atom method potential function is employed to model the interaction between the Fe atoms. Young's moduli are calculated based on the stress-strain diagrams of uniaxial tension and compression tests of the nanowires. The mechanical behavior of bulk Fe metal is also simulated and analyzed to compare its outcomes with the nanowires. According to the results, the tensile/compressive strength values in the bulk model are higher than the nanowires. Besides, in compressive loading, the strength values depend more than tensile loading on the shapes of the cross sections following the order: circular> polygon> square> triangle. However, except for the triangular case, tensile strength values are less sensitive to the change of the shape of the cross section. In addition, different twinning planes and Burgers vectors are found for various cross sections, and their similarities and differences are investigated in detail. Analytic models are also developed for the prediction of the mechanical behavior of nanowires with various cross sections.
Return to Publications page