Understanding mechanisms of pyridine oxidation with ozone addition via reactive force field molecular dynamics simulations

ZZ Bai and XZ Jiang and KH Luo, CHEMICAL ENGINEERING SCIENCE, 266, 118290 (2023).

DOI: 10.1016/j.ces.2022.118290

Ozone assisted combustion is a promising method to control combustion, ignition and pollutant formation. In this study, we investigated the ozone behaviours in fuel-NOx control through reactive force field (ReaxFF) molecular dynamics (MD) simulations of pyridine (a main nitrogen-containing compound in coal) oxidation under different ozone concentrations. The results show that ozone enhances the pyridine combustion process and facilitates the conversion of CO to CO2 and NO to NO2. Ozone participates in the reactions with intermediates and promotes the generation of active particles like OH, HO2, HO3 and H2O2. This research reveals mechanisms, at the atomic level, for the effects of main products formation during pyridine oxidation under different levels of ozone addition. The present study provides the scientific base for the control of NOx emissions through ozone assisted combustion technology. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return to Publications page