Suspended water nanodroplets evaporation and its deviation from continuum estimations

EYM Ang and PC Wang and W Toh and TY Ng, JOURNAL OF MOLECULAR LIQUIDS, 370, 121034 (2023).

DOI: 10.1016/j.molliq.2022.121034

Although droplets evaporation is fundamental to many applications and phenomena, accurate prediction of their evaporation trajectory is still a technological gap today. This is even more so for nanodroplets when compared to the macro-sized droplets. Since it is technically challenging to observe real nan-odroplets evaporation today, this contribution uses full atomistic molecular dynamics simulations to observe and quantify suspended water nanodroplets evaporation. There are two main findings to this contribution. First, it is shown in detail that continuum analysis significantly over predicts the evapora-tion rate of nanodroplets. This makes continuum analysis unsuitable to predict water nanodroplets' behavior. Secondly, this contribution illustrates the use of data-driven approach that can be used for nan- odroplets evaporation behavior prediction, instead of running full atomistic molecular dynamics simula-tions for every different condition, which can be prohibitively expensive. The paper hopes to encourage scientists working in similar field to share their MD results for nanodroplets evaporation to build a data-driven model that could be used to predict nanodroplets evaporation trajectory at a fraction of the cost of full-scale MD simulations.(c) 2022 Elsevier B.V. All rights reserved.

Return to Publications page