Role of Surface Chemistry in Adhesion between ZnO Nanowires and Carbon Fibers in Hybrid Composites

GJ Ehlert and U Galan and HA Sodano, ACS APPLIED MATERIALS & INTERFACES, 5, 635-645 (2013).

DOI: 10.1021/am302060v

Low interface strength is a persistent problem in composite materials and cascades to limit a variety of bulk material properties such as lamina shear strength. Whiskerization has long been pursued as a method to reinforce the interphase and improve both the single fiber interface strength as well as the bulk properties. Recent developments have shown that ZnO nanowire whiskerization can effectively improve the properties of a bulk composite without requiring the high temperatures that previous deposition processes needed. Although the efficacy of a ZnO nanowire interphase has been established, the mechanism for adhesion of the interphase to the fiber has not been identified. Specifically, the addition of the ZnO nanowires to the surface of the fibers requires that the ZnO nanowires have strong chemical adhesion to the fiber surface. This work will create a variety of chemical environments on the surface of the fibers through new and common chemical functionalization procedures and quantify the surface chemistry through X-ray photoelectron spectroscopy. The effect of fiber surface chemistry on the adhesion of the ZnO is assessed through single fiber fragmentation testing. The interface strength is found to strongly correlate with the concentration of ketone groups on the surface of the fibers. Following the experimental observations, liftoff of a ZnO crystal from a graphene surface was simulated with a variety of surface functionalizations. The computational models confirm the preference for ketone groups in promoting adhesion between ZnO and graphite.

Return to Publications page