Diffusion in undoped and Cr-doped amorphous UO 2

MW Owen and MWD Cooper and MJD Rushton and A Claisse and WE Lee and SC Middleburgh, JOURNAL OF NUCLEAR MATERIALS, 576, 154270 (2023).

DOI: 10.1016/j.jnucmat.2023.154270

UO 2 fuel pellets are often doped with chromium oxide to obtain favourable properties such as higher density, improved thermal stability, large grain sizes, improved pellet-clad interaction margins, and increased fission gas retention during transients. Chromium has a low solubility limit in UO 2 , with past experimental work reporting solubility limits ranging between 0.004 to 0.06 wt.% Cr. Due to its low solubility, segregation of Cr ions to the grain boundary may occur. Further, the complexity of these boundaries may be high as observed in other ceramics resulting in disordered or amorphous regions along the boundary, affecting a range of material and operational properties of the fuel pellet. To assess these disordered regions, in this work we study amorphous undoped and Cr doped UO 2 systems (containing 10-50 at.% Cr 3 + ) that have been modelled using classical molecular dynamics methods incorporating Cr 3 + into the well-used CRG potential library. Diffusion coefficients, pre-exponential factors, and activation energies for diffusion were computed for oxygen ions, assessing the impact of structure and extrinsic species on migration. Oxygen diffusion was observed to be much faster in the undoped amorphous system compared to its crystalline counterpart. Oxygen diffusion in doped systems decreased with increasing Cr concentration, highlighting the importance of additives to retain fission products and other migratory species.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Return to Publications page