A hydrothermal anvil made of graphene nanobubbles on diamond
CHYX Lim and A Sorkin and QL Bao and A Li and K Zhang and M Nesladek and KP Loh, NATURE COMMUNICATIONS, 4, 1556 (2013).
DOI: 10.1038/ncomms2579
The hardness and virtual incompressibility of diamond allow it to be used in high-pressure anvil cell. Here we report a new way to generate static pressure by encapsulating single-crystal diamond with graphene membrane, the latter is well known for its superior nano-indentation strength and in-plane rigidity. Heating the diamond-graphene interface to the reconstruction temperature of diamond (similar to 1,275 K) produces a high density of graphene nanobubbles that can trap water. At high temperature, chemical bonding between graphene and diamond is robust enough to allow the hybrid interface to act as a hydrothermal anvil cell due to the impermeability of graphene. Superheated water trapped within the pressurized graphene nanobubbles is observed to etch the diamond surface to produce a high density of square-shaped voids. The molecular structure of superheated water trapped in the bubble is probed using vibrational spectroscopy and dynamic changes in the hydrogen-bonding environment are observed.
Return to Publications page