ReaxFF molecular dynamics simulation of the thermal decomposition reaction of bio-based polyester materials
XY Li and Y Han and JJ Qu and QH Chen and Y Wei and GY Hou and J Liu, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 25, 9445-9453 (2023).
DOI: 10.1039/d2cp04799c
Bio-based polyester elastomers have been widely studied by researchers in recent years because of their comprehensive sources of monomers and environmentally friendly characteristics. However, compared with traditional petroleum-based elastomers, the thermal decomposition temperature of bio-based polyester elastomers is generally low, limiting the application of bio-based elastomers. An effective strategy to increase the intrinsic thermal decomposition temperature (T-d) of bio- based elastomers is to increase the length of the monomer carbon chain in the bio-based elastomers. In this work, the content of dodecanedioic acid (DDA) in a bio-based polyester elastomer composed of butanediol (BDO) and succinic acid (SUA) was increased to improve the T-d of the bio-based polyester elastomer through the reaction force-field molecular dynamics (ReaxFF-MD) simulations. And the thermal decomposition mechanism of the bio-based polyester was analyzed in detail. By calculating the change rate of the molecular chain mean square displacement (MSD), it was determined that when the content of DDA was 50%, the T-d of the bio-based elastomer was up to 718 K. By calculating the activation energy of thermal decomposition and further analyzing the thermal decomposition process, it is found that the thermal decomposition of the bio-based polyester elastomer is mainly through breaking the C-O bond in the backbone. This work is expected to provide theoretical guidance for designing and fabricating highly heat-resistant bio-based elastomers by systematically exploring the thermal decomposition mechanism of bio-based polyester elastomers.
Return to Publications page