Efficient Non-Destructive Detection of Interface Adhesion State by Interfacial Thermal Conductance: A Molecular Dynamics Study
JH Guo and NP Ma and JL Chen and N Wei, PROCESSES, 11, 1032 (2023).
DOI: 10.3390/pr11041032
The state of interface adhesion, as measured by the void ratio, is a critical factor affecting the adhesion strength and heat dissipation efficiency of a system. However, non-destructive and rapid detection of the adhesion process remains a challenge. In this study, we used all- atom molecular dynamics simulations to investigate the interfacial thermal conductance of silicon and polymer at various adhesion void ratios, with the aim of achieving non-destructive and rapid detection of the adhesion process. Our results demonstrate a linear relationship between the interfacial thermal conductance and effective contact area at different temperatures, enabling the numerical value of interfacial thermal conductance to serve as an indicator of interfacial adhesion state. Furthermore, we also output the surface temperature of the adhesive interface. The non-uniformity of the surface temperature evolution can be used to identify the location of bubbles on the adhesive surface, which further reflects the bonding state of the interface. This project presents a novel approach and research framework for the non-destructive and rapid testing of the adhesion processes.
Return to Publications page